
计算概论A—实验班

函数式程序设计

Functional Programming

胡振江，张 伟

北京⼤学 计算机学院

2022年09～12⽉

第7章：⾼阶函数

Higher-order Function

Adapted from Graham’s Lecture slides

Higher-order Function
A function is called higher-order

if it takes a function as an argument or returns a function as a result.

 twice :: (a -> a) -> a -> a

 twice f x = f (f x)

• twice is higher-order,

- because it takes a function as its first argument

Why Higher-order Function

✤Common programming idioms can be encoded as functions
within the language itself.

✤Domain specific languages can be defined as collections of
higher-order functions.

✤Algebraic properties of higher-order functions can be used
to reason about programs.

The map Function
✴The higher-order library function called map applies a function

to every element of a list.

 map :: (a -> b) -> [a] -> [b]

 ghci> map (+1) [1,2,3,4,5]

 [2,3,4,5,6]

The map Function

 map :: (a -> b) -> [a] -> [b]

 map _ [] = []

 map f (x:xs) = f x : map f xs

 map :: (a -> b) -> [a] -> [b]

 map f xs = [f x | x <- xs]

✴The map function can be defined in a particularly simple
manner using a list comprehension:

✴Alternatively, for the purposes of proofs, the map function can
also be defined using recursion:

The filter Function
✴The higher-order library function filter selects every element

from a list that satisfies a predicate.

 filter :: (a -> Bool) -> [a] -> [a]

 ghci> filter even [1..10]

 [2,4,6,8,10]

The filter Function

 filter :: (a -> Bool) -> [a] -> [a]

 filter _ [] = []

 filter pred (x:xs)

 | pred x = x : filter pred xs

 | otherwise = filter pred xs

 filter :: (a -> Bool) -> [a] -> [a]

 filter pred xs = [x | x <- xs, pred x]

✴filter can be defined using a list comprehension:

✴Alternatively, it can be defined using recursion:

The foldr Function

别⼈都叫foldr，你为什么要叫foldlr

这⾥的foldr，⼤概对应于前⽂引⼊的foldlr

我觉得，foldlr 更美！

其实：Prelude中的foldr的抽象级别更⾼

The foldr Function on Lists
✴A number of functions on lists can be defined using the

following simple pattern of recursion:

 f [] = v

 f (x:xs) = x ⨁ f xs

• f maps the empty list to some value v, and any non-empty
list to some function ⨁ applied to its head and f of its tail.

 f [] = v

 f (x:xs) = x ⨁ f xs

✴For example:

 sum [] = 0

 sum (x:xs) = x + sum xs

 product [] = 1

 product (x:xs) = x * product xs

 and [] = True

 and (x:xs) = x && and xs

The foldr Function
✴The higher-order library function foldr (fold right) encapsulates

this simple pattern of recursion, with the function ⨁ and the
value v as arguments.

✴For example:

 sum = foldr (+) 0

 product = foldr (*) 1

 or = foldr (||) False

 and = foldr (&&) True

The foldr Function

The foldr on lists can be defined using recursion

 foldr :: (a -> b -> b) -> b -> [a] -> b

 foldr f v [] = v

 foldr f v (x:xs) = f x (foldr f v xs)

✴However, it is best to think of foldr non-recursively, as
simultaneously replacing each (:) in a list by a given function,
and [] by a given value.

The foldr on lists: Examples

sum [1,2,3]
=

foldr (+) 0 [1,2,3]

=

foldr (+) 0 (1:(2:(3:[])))

=

1+(2+(3+0))
=

6

product [1,2,3]

=

foldr (*) 1 [1,2,3]
=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6

 sum = foldr (+) 0 product = foldr (*) 1

The foldr on lists: Examples
 length :: [a] -> Int

 length [] = 0

 length (_:xs) = 1 + length xs

length [1,2,3]
=

length (1:(2:(3:[])))
=

1+(1+(1+0))
=

3

 length :: [a] -> Int

 length = foldr (\ _ n -> 1+n) 0

The foldr on lists: Examples
 reverse :: [a] -> [a]

 reverse [] = []

 reverse (x:xs) = reverse xs ++ [x]

reverse [1,2,3]
=

reverse (1:(2:(3:[])))
=

(([] ++ [3]) ++ [2]) ++ [1]

=

[3,2,1]

 reverse :: [a] -> [a]

 reverse = foldr (\x xs -> xs ++ [x]) []

The foldr on lists: Examples
✴Finally, we note that the append function (++) has a

particularly compact definition using foldr:

 (++) :: [a] -> [a] -> [a]

 (++ ys) = foldr (:) ys

遗憾的是：Haskell似乎不⽀持这种定义⽅式

“error: Parse error in pattern: ++ys”

 (++) :: [a] -> [a] -> [a]

 (++) xs ys = foldr (:) ys xs

 (++) :: [a] -> [a] -> [a]

 (++) = flip $ foldr (:)

Why foldr

✴Some recursive functions on lists, such as sum, are simpler to
define using foldr.

✴Properties of functions defined using foldr can be proved using
algebraic properties of foldr, such as fusion and the banana
split rule.

✴Advanced program optimizations can be simpler if foldr is
used in place of explicit recursion.

The foldl Function on Lists
✴ It is also possible to define recursive functions on lists using

an operator that is assumed to associate to the left.

 f v [] = v

 f v (x:xs) = f (v ⨁ x) xs

• f ﻿maps the empty list to the accumulator value v, and any
non-empty list to the result of recursively processing the
tail using a new accumulator value obtained by applying
an operator ⨁ to the current value and the head of the list.

The foldl Function on Lists
✴ foldl on lists itself can be defined using recursion:

 foldl :: (b -> a -> b) -> b -> [a] -> b

 foldl f v [] = v

 foldl f v (x:xs) = foldl f (f v x) xs

The foldl Function

Other Library Functions: (.)
✴The library function (.) returns the composition of two functions

as a single function.

 (.) :: (b -> c) -> (a -> b) -> a -> c

 (.) f g = \x -> f $ g x

✴For example:

 odd :: Int -> Bool

 odd = not . even

Other Library Functions: all

✴all on lists can be defined as

 all :: (a -> Bool) -> [a] -> Bool

 all p xs = and [p x | x <- xs]

Other Library Functions: any

 any :: (a -> Bool) -> [a] -> Bool

 any p xs = or [p x | x <- xs]

✴any on lists can be defined as

Other Library Functions: takeWhile
✴The library function takeWhile selects elements from a list

while a predicate holds of all the elements.
 takeWhile :: (a -> Bool) -> [a] -> [a]

 takeWhile _ [] = []

 takeWhile p (x:xs)

 | p x = x : takeWhile p xs

 | otherwise = []

 ghci> takeWhile (/= ' ') "abc def"

 "abc"

Other Library Functions: dropWhile
✴Dually, the function dropWhile removes elements while a

predicate holds of all the elements.

 dropWhile :: (a -> Bool) -> [a] -> [a]

 dropWhile _ [] = []

 dropWhile p xs@(x:xs')

 | p x = dropWhile p xs'

 | otherwise = xs

 ghci> dropWhile (== ' ') " abc"

 "abc"

应⽤1: Binary String Transmitter
✴2进制数 转换到 10进制数

 type Bit = Int

 bin2int :: [Bit] -> Int

 bin2int bits = sum [w * b | (w, b) <- zip weights bits]

 where weights = iterate (* 2) 1

 -- iterate is defined in Prelude

 -- iterate :: (a -> a) -> a -> [a]

 -- iterate f x = x : iterate f (f x)

 ghci> bin2int [1,0,1,1]

 13

还有更简洁的定义⽅式吗 bin2int :: [Bit] -> Int

 bin2int = foldr (\x y -> x + 2 * y) 0

应⽤1: Binary String Transmitter
✴10进制数 转换到 8位2进制数

 ghci> int2bin8 13

 [1,0,1,1,0,0,0,0]

 int2bin :: Int -> [Bit]

 int2bin 0 = []

 int2bin n = mod n 2 : int2bin (div n 2)

 make8 :: [Bit] -> [Bit]

 make8 bits = take 8 $ bits ++ repeat 0

 -- repeat is defined in Prelude

 -- repeat :: a -> [a]

 -- repeat x = xs where xs = x : xs

 int2bin8 :: Int -> [Bit]

 int2bin8 = make8 . int2bin

应⽤1: Binary String Transmitter
✴⽂字序列编码

 ghci> encode "abc"

 [1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]

 encode :: String -> [Bit]

 encode = concat . map (make8 . int2bin . ord)

应⽤1: Binary String Transmitter
✴2进制序列解码
 ghci> decode [1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]

 "abc"

 decode :: [Bit] -> String

 decode = map (chr . bin2int) . chop8

 chop8 :: [Bit] -> [[Bit]]

 chop8 [] = []

 chop8 bits = take 8 bits : chop8 (drop 8 bits)

应⽤2: 投票算法 之 First past the post
✴ In this system, each person has one vote, and the candidate

with the largest number of votes is declared the winner.
 votes :: [String]

 votes = ["Red", "Blue", "Green", "Blue", "Blue", "Red"]

 ghci> result votes

 [(1,”Green"),(2,"Red"),(3,"Blue")]

 ghci> :type result

 result :: Ord a => [a] -> [(Int, a)]

 ghci> winner votes

 "Blue"

 ghci> :type result

 result :: Ord a => [a] -> [(Int, a)]

应⽤2: 投票算法 之 First past the post
 votes :: [String]

 votes = ["Red", "Blue", "Green", "Blue", "Blue", “Red"]

 result :: Ord a => [a] -> [(Int, a)]

 result vs = sort [(count v vs, v) | v <- rmdups vs]

 -- The sort function is defined in Data.List

 rmdups :: Eq a => [a] -> [a]

 rmdups [] = []

 rmdups (x:xs) = x : filter (/= x) (rmdups xs)

 count :: Eq a => a -> [a] -> Int

 count x = length . filter (== x)

 winner :: Ord a => [a] -> a

 winner = snd . last . result

应⽤2: 投票算法 之 Alternative vote
✴ In this voting system, each person can vote for as many or as

few candidates as they wish, listing them in preference order
on their ballot (1st choice, 2nd choice, and so on).

 ballots :: [[String]]

 ballots = [["Red", "Green"],

 ["Blue"],

 ["Green", "Red", "Blue"],

 ["Blue", "Green", "Red"],

 ["Green"]]

 ghci> winner' ballots

 "Green"

 ghci> :type winner’

 winner' :: Ord a => [[a]] -> a

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Red", "Green"],

 ["Blue"],

 ["Green", "Red", "Blue"],

 ["Blue", "Green", "Red"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Red", "Green"],

 ["Blue"],

 ["Green", "Red", "Blue"],

 ["Blue", "Green", "Red"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Green"],

 ["Blue"],

 ["Green", "Blue"],

 ["Blue", "Green"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Green"],

 ["Blue"],

 ["Green", "Blue"],

 ["Blue", "Green"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Green"],

 [],

 ["Green"],

 ["Green"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Green"],

 [],

 ["Green"],

 ["Green"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote
✴ To decide the winner,

- any empty ballots are first removed,
- then the candidate with the smallest number of 1st-choice votes is

eliminated from the ballots,
- and same process is repeated until only one candidate remains, who is

then declared the winner.

 ballots :: [[String]]

 ballots = [["Green"],

 ["Green"],

 ["Green"],

 ["Green"]]

应⽤2: 投票算法 之 Alternative vote

 winner' :: Ord a => [[a]] -> a

 winner' bs = case rank $ filter (/= []) bs of

 [c] -> c

 (c:cs) -> winner' $ map (filter (/= c)) bs

 rank :: Ord a => [[a]] -> [a]

 rank = map snd . result . map head

作业

作业

7-1 Express the comprehension [f x | x <- xs, p x]
using the functions map and filter.

7-2 Redefine map f and filter p using foldr.

作业
7-3 Modify the binary string transmitter example to detect simple

transmission errors using the concept of parity bits.
‣ That is, each eight-bit binary number produced during encoding is

extended with a parity bit,
- set to one if the number contains an odd number of ones, and to

zero otherwise.
‣ In turn, each resulting nine-bit binary number consumed during

decoding is checked to ensure that its parity bit is correct, with the
parity bit being discarded if this is the case, and a parity error
being reported otherwise.

Hint: the library function error :: String -> a displays the given string
as an error message and terminates the program; the polymorphic
result type ensures that error can be used in any context.

第7章：⾼阶函数

High-order Function

Adapted from Graham’s Lecture slides

就到这⾥吧

