e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

BRI L, 5K 19
TERKF ITENLFbr
2022F09~12H

Adapted from Graham’s Lecture slides

BTE:. SRR

Higher-order Function

Higher-order Function

A function is called higher-order
If it takes a function as an argument or returns a function as a result.

twice :: (a —> a) -> a -—> a
twice f x = f (f x)

® twice is higher-order,
- because It takes a function as its first argument

Why Higher-order Function

o¢*» Common programming idioms can be encoded as functions
within the language itself.

¢*» Domain specific languages can be defined as collections of
higher-order functions.

o%* Algebraic properties of higher-order functions can be used
to reason about programs.

The map Function

X The higher-order library function called map applies a function
to every element of a list.

map :: (a — b) —> [a] — [b]

ghci> map (+1) [1,2,3,4,5]
[2,3,4,5,6]

The map Function

X The map function can be defined in a particularly simple
manner using a list comprehension:

map :: (a —> b) —> [a] —> [b]
map f xs = [f x | x <= XS]

X Alternatively, for the purposes of proofs, the map function can
also be defined using recursion:

map :: (a —> b) —> [a] —> [b]

IE
map f (x:xs) f x : map f Xxs

The filter Function

X The higher-order library function filter selects every element
from a list that satisfies a predicate.

filter :: (a —) — [a] —> [a]

ghci> filter even [1..10]
12,4,6,8,10]

The filter Function

> filter can be defined using a list comprehension:

filter :: (a —>) — [a] — [al
filter pred xs = [x | x <- xs, pred Xx]

X Alternatively, it can be defined using recursion:

filter :: (a —) — [a] —> [a]

filter =
filter pred (x:xs)
| pred X X i filter pred Xxs

| otherwilse filter pred Xxs

The foldr Function

XEBRfoldr, K#EEXNFBRIX5|IABIfoldlr

G:;fjéa% Al A #ZR0Y foldr Mdjﬂ'/A%[IH foldlr j

SRR ¥, foldlr EE!]>

H5C: relude':F'EI’]fold riVIREFHES]>

The foldr Function on Lists

X A number of functions on lists can be defined using the
following simple pattern of recursion:

e f maps the empty list to some value v, and any non-empty
list to some function @ applied to its head and f of its tall.

f I =V
f (xixs) = x @ f xs
X For example:

sum || 0
sum (x:xs) X + sum XS

product [] 1
product (x:xs) X % product xs
T

and || rue
and (x:xs) X && and Xxs

The foldr Function

% The higher-order library function foldr (fold right) encapsulates
this simple pattern of recursion, with the function @& and the

value v as arguments.

X For example:

sum foldr
product foldr

or foldr
and foldr

The foldr Function

class Foldable t where # Source

foldr :: (a -=> b -> b) ->b ->t a ->b # Source

Right-associative fold of a structure, lazy in the accumulator.

In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the
list using the binary operator, from right to left:

foldr £ z [x1, X2, ..., Xn] == x1 £ (x2 £ ... (xn £ 2z)...)

Note that since the head of the resulting expression is produced by an application of the operator to the first element of the list, given an operator
lazy in its right argument, foldxr can produce a terminating expression from an unbounded list.

For a general Foldable structure this should be semantically identical to,

foldr £ z = foldr £ z . tolList

The foldr on lists can be defined using recursion

foldr :: (a —> b —> b) —> b —> [a] —> b
foldr f v Y;
foldr f v (x:xs) f x (foldr f v xs)

X However, it is best to think of foldr non-recursively, as
simultaneously replacing each (:) in a list by a given function,
and [] by a given value.

The foldr on lists: Examples

sum = foldr (+) © product = foldr (%) 1

sum [1,2,3] product [1,2,3]
: foldr (+) 0 [1,2,3]) foldr (x) 1 [1,2,3]
) foldr (+) 0 (1:(2:(3:[]1)))) foldr (x) 1 (1:(2:(3:1])))
: 1+(2+(3+0))) 1k (2% (3%1))
) 6) 6

The foldr on lists: Examples

length :: [a] —>
Llength = 0
length (_:xs) = 1 + length xs

length [1,2,3]

length (1:(2:(3:[1)))

n —> 1+n) 0

1+(1+(1+0)) —

3

The foldr on lists: Examples

reverse :: [a]
reverse
reverse (x:xs) reverse xs ++ [Xx]

reverse [1,2,3]

reverse (1:(2:(3:[]1)))

reverse :: [a] —> [a]

=

reverse = foldr (\x xs —> xs ++ [x])

(CL1 ++ [3]) ++ [2]) ++ [1]

[3,2,1]

The foldr on lists: Examples

X Finally, we note that the append function (++) has a
particularly compact definition using foldr:

(++) :: [a] — la] — l[al
(++ ys) = foldr (:) ys

=% E: HaskellflFEAZIFIMEN AR

“error: Parse error in pattern: ++ys”

(++) :: [a] — [a] — [al (++) :: [a] — [a] — [al
(++) xs ys = foldr (:) ys xs (++) = flip $ foldr (:)

Why foldr

X Some recursive functions on lists, such as sum, are simpler to
define using foldr.

X Properties of functions defined using foldr can be proved using
algebraic properties of foldr, such as fusion and the banana
split rule.

X Advanced program optimizations can be simpler if foldr is
used in place of explicit recursion.

The foldl Function on Lists

X It is also possible to define recursive functions on lists using
an operator that is assumed to associate to the left.

fv]] =V
fv (Xx:xs) =T (v & x) xs

e f maps the empty list to the accumulator value v, and any
non-empty list to the result of recursively processing the
tail using a new accumulator value obtained by applying
an operator @ to the current value and the head of the list.

The foldl Function on Lists

X foldl on lists itself can be defined using recursion:

foldl 22 (b —>a —=>Db) = b — [a] —> Db
foldl T v = V

foldl f v (x:xs) = foldl f (f v x) xs

The foldl Function

class Foldable t where # Source

foldl :: (b -> a ->b) ->b ->t a ->b # Source

Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left
sequencing and an operator that is lazy in its left argument.

In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the
binary operator, from left to right:

foldl £ z [x1, x2, ..., Xn] == (...((z £ x1) £ x2) £ ...) £ =xn
Note that to produce the outermost application of the operator the entire input list must be traversed. Like all left-associative folds, fold1l will diverge if
given an infinite list.

If you want an efficient strict left-fold, you probably want to use foldl ' instead of £oldl. The reason for this is that the latter does not force the inner
results (e.g.z ~ £~ x1 in the above example) before applying them to the operator (e.g.to (£~ x2)).This results in a thunk chain @(n) elements long,
which then must be evaluated from the outside-in.

For a general Foldable structure this should be semantically identical to:

foldl £ z = foldl £ z . toList

Other Library Functions: (.)

X The library function (.) returns the composition of two functions
as a single function.

X For example:

odd :: —>
odd = not . even

Other Library Functions: all

all :: Foldable t => (a -> Bool) -> t a -> Bool

Determines whether all elements of the structure satisfy the predicate.

> all on lists can be defined as

all :: (a —) — la] —

all p xs = and [p x | x <= xs]

Other Library Functions: any

any :: Foldable t => (a -> Bool) -> t a -> Bool

Determines whether any element of the structure satisfies the predicate.

X any on lists can be defined as

any :: (a —>) —> [a] —>

any p xs = or [p x | x <= xs]

Other Library Functions: takeWhile

* The library function takeWhile selects elements from a list
while a predicate holds of all the elements.

takeWhile :: (a —>) — [a] —> [a]

takeWhile

takeWhile p (x:xs)

| p X X : takeWhile p xs
| otherwise

ghci> takeWhile (/= "' '
"abC"

Other Library Functions: dropWhile

* Dually, the function dropWhile removes elements while a
predicate holds of all the elements.

dropWhile :: (a —>) — [a] —> [al
dropWhile =

dropWhile p xs@(x:xs"')
|
|

D X dropWhile p xs'
otherwise XS

ghci> dropWhile (==
"abC"

MW F1: Binary String Transmitter
X OIS BEHRE 100

ghci> bin2int [1,0,1,1]
13

bin2int :: |] —>
bin2int bits = sum [w *x b | (w, b) <- zip weights bits]
weights = iterate (x 2) 1

Y

A

LA

; /
‘\

pinzint - foldr (v BREWROEX SRS Ly

bin2int = foldr (\x y => x + 2 x y) 0

MW F1: Binary String Transmitter

K 102 EN 351 81277 Il 2N

int2bin :: —> |]
1nt2bin 0
int2bin n = mod n 2 : int2bin (div n 2)

ghci> int2bin8 13 make8 :: |] — []
(1,0,1,1,0,0,0,0] nake8 bits = take 8 $ bits ++ repeat 0

int2bin8 :: —> |]
1Nnt2b1n8 = make8 . 1nt2bin

MW F1: Binary String Transmitter
* PR

ghci> encode "abc"
(1,9,0,0,0,1,1,0,0,1,0,90,0,1,1,0,1,1,0,0,0,1,1,0]

encode :: -> [Bit]
encode = concat . map (make8 . int2bin . ord)

MW F1: Binary String Transmitter
x 23l e 51 fEAS

ghci> decode [1,0,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,0,0,1,1,0]
"abC"

decode :: [Bit] —>
decode = map (chr . bin2int) . chop8

chop8 :: [Bit] —> [[Bit]]
chop8
chop8 bits = take 8 bits : chop8 (drop 8 bits)

NF2: IEEH)L Z First past the post

X In this system, each person has one vote, and the candidate
with the largest number of votes is declared the winner.

votes :: | |
votes = | ,

ghci> result votes

[(1,”Green"), (2,"Red"), (3,"Blue")]
ghci> :type result

result :: Ord a => [a]l] —> [(Int, a)]

ghci> winner votes

"Blue"

ghci> :type result

result :: Ord a => [a] —> [(Int, a)]l

NF2: IEEH)L Z First past the post

votes :: |]
votes = ["Red", "Blue", "Green", "Blue", "Blue", “Red"]

result :: a => [a] —> [, a)l
result vs = sort [(count v vs, v) | v <— rmdups vs]

rmdups :: a => [a] — [al
rmdups =
rmdups (x:xs) = x : filter (/= x) (rmdups xs)

count :: a =>a — [a] —
count x = length . filter (== x)

winner :: a => [a] —> a
winner = snd . last . result

NA2: IsEE % Z Alternative vote

X In this voting system, each person can vote for as many or as
few candidates as they wish, listing them in preference order
on their ballot (1st choice, 2nd choice, and so on).

ballots :: []

ballots = [I ghci> winner' ballots
["Green"
|, ghci> :type winner’

[

[] winner' :: Ord a => [[al] — a
’

[

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: []]
ballots = [["Red", "Green"],
["Blue“],

[IIGreenll’ IIRedII’ IIB'LueII] .
[IIB'LueII’ IIGreenll’ IIRedII] .
["Green"]]

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: [I]]]
ballots = [I , 'Green"],
["Blue“],

[IIGreenll’ IIRedII’ IIB'LueII] .
[IIB'LueII’ IIGreenll’ IIRedII] .
["Green"]]

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: []]]
ballots = [["Green"],
["Blue“],

["Green", "Blue"],
["Blue", "Green"],
["Green"]]

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: []]]
ballots = [["Green"],

[I,

["Green", "Blue"],
| , ""Green"],
["Green"]]

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: []]]
ballots = [["Green"],

L],

["Green"],
["Green"],
["Green"]]

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: []]]
ballots = [["Green"],

’

["Green"],
["Green"],
["Green"]]

WA2: = E3E 7 Alternative vote

X To decide the winner,
- any empty ballots are first removed,

- then the candidate with the smallest number of 1st-choice votes is
eliminated from the ballots,

- and same process is repeated until only one candidate remains, who Is
then declared the winner.

ballots :: []]]
ballots = [["Green"],

["Green"],
["Green"],
["Green"]]

WA2: = E3E 7 Alternative vote

winner' :: a => [[a]] —> a

winner' bs = case rank $ filter (/= []) bs of
[C] —> C
(c:cs) —> winner' $ map (filter (/= c)) bs

rank :: a => [[a]] — [a]
rank = map snd . result . map head

¢l

/-1 Express the comprehension [f X | X <- xS, p X]
using the functions map and filter.

/-2 Redefine map f and filter p using foldr.

¢l

7-3 Modify the binary string transmitter example to detect simple

transmission errors using the concept of parity bits.

> That is, each eight-bit binary number produced during encoding is
extended with a parity bit,
- set to one if the number contains an odd number of ones, and to

zero otherwise.

> In turn, each resulting nine-bit binary number consumed during
decoding is checked to ensure that its parity bit is correct, with the
parity bit being discarded if this is the case, and a parity error
being reported otherwise.

Hint: the library function error :: String -> a displays the given string
as an error message and terminates the program; the polymorphic
result type ensures that error can be used in any context.

Adapted from Graham’s Lecture slides

BTE:. SRR

High-order Function

w2 X ENE

